Identification of Myasthenia Gravis Exacerbations, Crises, and Symptom Burden Using Rules-Based Natural Language Processing Applied to Neurologist Clinical Notes

Jonathan Darer, MD, MPH¹; Jacqueline Pesa, PhD, MPH²; Zia Choudhry, MD³; Alberto E. Batista, PharmD, MS³; Purva Parab, PhD¹; Xiaoyun Yang, MS¹; Raghav Govindarajan, MD⁴

INTRODUCTION

- Myasthenia gravis (MG) is a rare chronic autoantibody-mediated neuromuscular disorder affecting approximately 60,000 individuals in the United States¹
- MG is characterized by fluctuating weakness and unpredictable deterioration that may require rescue therapies and hospitalization²
- Better understanding is needed of real-world neurologist documentation of clinical encounters, particularly with respect to documentation of MG-related symptoms and clinical deterioration for individuals with MG
- Natural language processing (NLP) has been used in analysis of unstructured clinician text³ but has not been applied to the care of individuals with MG

OBJECTIVE

 To assess the feasibility of identifying symptoms and clinical deterioration for individuals with MG as documented in neurologist clinical progress notes

METHODS

Study design

 This was a retrospective, cross-sectional, descriptive analysis of de-identified neurologist notes

Data source

- Medical transcriptions from Amplity Insights were used, including the full text from dictated clinical notes covering 150,000 physicians from over 40,000 clinics and hospitals in the United States between 2017 and 2022
- Notes from non-neurologists and notes with non-standard formatting were excluded from the analysis

NLP model

- A rules-based NLP model, developed using spaCy (an open-source NLP library), was used to create an analyzable dataset
- The performance of the NLP model was assessed against manual annotations using Prodigy

Analysis

- Rates of individuals with MG with symptoms relevant to MG and documentation indicating clinical deterioration, including worsening, exacerbations, and crises, were calculated
- The NLP model's performance was assessed using the F1 score—the harmonic mean of precision and recall (2 X Precision X Recall)/ (Precision + Recall)
- Qualitative analysis of physician documentation was carried out to further categorize clinical deterioration

AUTOANTIBODY: N

¹Health Analytics; ²Janssen Scientific Affairs, LLC, Titusville, NJ, USA; ³Janssen Pharmaceutical Companies of Johnson & Johnson; ⁴Hospital Sisters Health Systems Medical Group

RESULTS

- After applying rules to the medical transcription data including excluding notes by providers other than neurologists and for patients without a confirmed MG diagnosis, 5183 notes were available for analysis (**TABLE 1**)
- Ptosis (34.7%), diplopia (30.0%), dysphagia (23.0%), and fatigue (22.5%) were the most frequently reported MG symptoms (**TABLE 2**)
- A total of 3085 patients with MG were identified, with 12.7% experiencing clinical deterioration events (e.g., exacerbations) and 4.3% experiencing MG crises
- Overall, 37.9% of patients with MG reported "any symptom worsening" during the study period (TABLE 2)

TABLE 1. Note attrition			
Description of notes	Number of notes removed	Number of notes remaining	
All available notes that were labeled "myasthenia gravis" or "MG" by Amplity Insights	0	45,414	
Neurologist notes		6557 (100.0%)	
Notes limited to a single patient and encounter	37	6520 (99.4%)	
Notes limited to formatting compatible with NLP analysis ^a	416	6104 (93.1%)	
Notes limited to patients with confirmed diagnosis of MG	921	5183 (79.0%)	

^aNotes with carriage returns in the middle of sentences or notes configured as a single paragraph (i.e., unformatted) were excluded to avoid misinterpretation. MG, myasthenia gravis; NLP, natural language processing.

REFERENCES

1. Salari N, et al. *J Transl Med.* 2021;19:516. **2.** Jayam Trouth A, et al. *Autoimmune Dis.* 2012;2012:874680. **3.** Crema C, et al. *Front Psychiatry*. 2022;13:946387.

(<5% of notes)

Population attribute, n (%)	Patients with MG (N=3085)
Age	
<40 years	172 (5.6)
40–64 years	599 (19.4)
≥65 years	1083 (35.1)
Missing	1231 (39.9)
MG symptoms	
Ptosis	1071 (34.7)
Diplopia	926 (30.0)
Dysphagia	712 (23.0)
Fatigue	693 (22.5)
Dyspnea	626 (20.3)
Dysarthria	514 (16.7)
Generalized weakness	350 (11.3)
Extremity weakness	280 (9.1)
Face, bulbar, tongue, or oropharyngeal weakness	232 (7.5)
Respiratory distress or respiratory failure	171 (5.5)
Neck weakness	121 (3.9)
Any symptom worsening	1169 (37.9)
MG clinical deterioration	
Exacerbations	391 (12.7)
Worsening	138 (4.5)
Crises	134 (4.3)
MG , myasthenia gravis.	

• Of note, the use of structured MG disease assessments (e.g., MG-ADL) was limited in physician documentation

- TABLE 2. Symptoms and clinical deterioration of patients
 with MG
- MG clinical deterioration was defined as exacerbations, worsening, or crises, and was documented in 12.7%, 4.5%, and 4.3% of patients, respectively
- Qualitative review of neurologist text yielded five categories of MG clinical deterioration
- **TABLE 3** displays the five categories of clinical deterioration, with examples of neurologist text extracted from the database

TABLE 3. Clinical deterioration and representative neurologist text

MG clinical deterioration	Repre
MG symptom fluctuation	<i>"He sto</i> worse evenin
MG symptom worsening with treatment intensification	"With i dyspho was sto 10 mg
MG deterioration with rescue therapy or hospitalization	<i>"Lookin</i> <i>record</i> <i>hospite</i> <i>second</i> <i>her my</i>
MG crisis requiring mechanical ventilation	<i>"Impregentler gentler myastl recurre respire intuba ventila</i>
Suspected MG deterioration	"Shorti concer exacer gravis.

MG, myasthenia gravis.

entative text

states the dysphagia is e in the afternoons and

increasing problems with hagia and dysarthria, she started on prednisone daily.'

ing through her medical d, she has been italized nearly every month ndary to exacerbations of nyasthenia gravis."

ession: a 50-year-old eman with refractory thenia gravis resulting in rent episodes of atory failure requiring ation and mechanical ation."

tness of breath is erning for possible erbation of myasthenia

LIMITATION

The NLP model was customized to the existing dataset, and the model's performance may differ for other datasets

CONCLUSIONS

The neurologist notes contained rich information regarding MG symptoms and clinical deterioration, although the use of structured instruments was limited

Documentation of worsening symptomatology is common in MG, highlighting the fluctuating nature of the disease

Prevalence of MG symptoms in this real-world, cross-sectional analysis of physician notes is lower than in longitudinal studies based upon patient questionnaires. Clinical documentation may focus upon symptoms of greatest importance to the practicing physician at the time of the encounter

ACKNOWLEDGMENTS

Janssen Scientific Affairs, LLC sponsored this research. Health Analytics received funding to conduct the study.

DISCLOSURES

JP, ZC, and AB are employees of Janssen Scientific Affairs, LLC. JD, and XY are employees of Health Analytics. **PP** was an employee of Health Analytics at the time the study was conducted. **RG** is an advisor for Janssen Scientific Affairs, LLC, and is a speaker and advisor for Argenx, UCB, and Alexion.